Co-author Dr. Mark White in the School of Chemistry at the University of Sydney said: “Climate change is a major global issue, not least for its impact on food security. We hope these findings can help produce flood-tolerant crops to help mitigate the devasting social and economic impact of extreme weather events on food production.”

The research, largely done at the University of Oxford, is published today in the Proceedings of the National Academy of Sciences.

Climate change has increased the number and intensity of global flooding events, threatening food security through significant crop loss. Plants, including staple crops such as rice, wheat and barley, can survive temporary periods of flooding by activating energy pathways that don’t rely on the air in response to the low oxygen conditions in the water.

These responses are controlled by oxygen-sensing enzymes called the Plant Cysteine Oxidases (PCOs), which use oxygen to regulate the stability of proteins that control gene activity.

The research describes the molecular structures of the PCOs for the first time, identifying chemical features that are required for enzyme activity.

“The results provide a platform for future efforts to manipulate the enzyme function in an attempt to create flood-resistant crops that can mitigate the impact of extreme weather events,” Dr. White said.